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Chebyshev polynomials of the first kind are applied to telescope
both the far-field multipole expansions and the near-field Taylor
series expansions used in solving large N-body problems via fast
multipole methods. The technique is demonstrated for pairwise-
additive, 1/rinterparticle potentials in Cartesian coordinates, and a
general Mathematica® package is provided to derive the modified
expansion coefficients symbeolically. Accelerated convergence and
more uniform error can he achieved without additional computa-
tions during runtime. Hence the telescoped series require fewer
expansion terms for a given accuracy requirement, saving consider-
able computational expense over conventional fast multipole
implementations. © 1985 Academic Press, inc.

1. INTRODUCTION

Over the last decade considerable effort and progress have
been made towards efficiently implementing large N-body com-
puter simulations. The more recent approaches replace groups
of distant particles by moments of charge (or mass) and compute
the interactions between groups using this approximation. Ap-
pel [11 and Barnes and Hut [2] introduced O(N log N) algo-
rithms using hierarchical tree structures to classify particle inter-
actions and low-order multipole expansions to compute far-
field interactions. Greengard and Rokhlin [3-7] and Zhao [8]
implemented both far-field and local expansions resulting in
O{N) fast multipole methods (FMM) for Coulombic and gravi-
tational potentials, respectively. These multipole methods con-
siderably improve computational efficiency and accuracy. Sub-
sequently, numerous investigators have reported efficient
implementations in a variety of particle simulations; however,
few have actually extended the fast multipole method itself.
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Lustig et al. [9] implemented the FMM in molecular dynamics
for complex particle interactions such as: soft-sphere, Lennard—
Jones, Morse and Yukawa potentials. Ding et al. [10] combined
Coulomb and London interactions, but achieved only limited
accuracy. More recently Shimada et al. [11, 12] developed a
combined particle—particle and particle-mesh/multipole
expansion technigue. In all the aforementioned methods, in-
creased accuracy can be achieved by increasing the number of
expansion terms retained in the multipole or local series, but
always at a significant increase in computational expense.

There is considerable motivation to improve the convergence
of FMM expansions. Low-order expansions, such as those trun-
cating at the quadrupolar terms, often provide error levels in
potential gradients that are unacceptable for stable, long-time
simulations. Unfortunately, the computational expense of the
FMM increases with the number of expansion terms, p, scaling
as O(p*) in spherical coordinates and O(p®) in Cartesian coordi-
nates. In addition, most computational shortcuts such as ‘‘su-
pernodes’” [8), or parental conversion in interactive lists, seem
only to degrade FMM accuracy. Furthermore, multipole and
Taylor series approximations generally exhibit the same, un-
even error distribution that can also result in cumulative, sys-
tematic artifacts in long-time dynamical simulations.

In this work we apply Chebyshev economization to both far-
field multipole expansions and near-field Taylor series expan-
sions used in solving large N-body problems involving pair-
wise-additive, interparticle potentials. Chebyshev economiza-
tion is a standard technique to approximate efficiently
polynomial representations and can be found in numerical anal-
ysis texts, e.g., {13-14]. Briefly, when polynomial series are
expressed using Chebyshev polynomials, some of the high-
order Chebyshev polynomials can be dropped with the assur-
ance that the error involved is less than a prescribed tolerance.
The truncated series can then be retransformed to a polynomial
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FIG. 1.

Geotnetry of far-field.

with fewer terms than the original, but with modified coeffi-
cients, The resulting approximation tends to yield the smallest
number of terms that will supply an accuracy within the pre-
scribed tolerance. Furthermore, the maximum error from the
untruncated series is minimized over the entire domain of appli-
cation, providing more uniform error. The technique is applica-
ble to expansions in any coordinate system. We do not repeat
a description of the FMM since details are available from
ariginal [3-8] and secondary [10, 15, 16] literature. In the
following we demonstrate the economization technique for sim-
ple 1/r potentials for Zhao's FMM framework [8] in three-
dimensional, Cartesian coordinates.

2. TELESCOPING THE FAR-FIELD
MULTIPOLE EXPANSION

One of the initial steps in the FMM is to compute the
multipole moments of mass (or charge) at a point ¥ due to
particles inside a region bounded by a sphere centered at y**
of radius r,. For the purpose of illustration, we need to consider
only one particle at position, ¥, on the sphere; see Fig. 1, The
distances r and R are from the position x to the particle and
sphere center, respectively. The potential, ® = 1/r, at a point,
x, well-separated from y*! due to the particle is given by the
following multiple expansion (1):

itk ( 1 )
e Il % 1
oxioxiaxi \R M

In the above x; (i = 1, 2, 3) indicate the Cartesian components
of x and the coefficients are given by

1_5%%,

1+}+k
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where v; (i = 1, 2, 3) denote the direction cosines between
y'ely and the coordinate axes. In the FMM we truncate the far-
field expansion (1) to a tetrahedral summation

b =3 3
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and compute the coefficients gy up to order p, The truncation
error, g, is small for r,/R <€ 1 and is bounded by

le| < (r”’)pﬂ 4
el=l%) > 4)
as proven earlier [8].

It is most common in FMM implementations to define the
minimum distance of the far-field using /R < 1, FMM-savvy
readers recognize this definition (i) expresses the choice of
defining a node’s far-field as those nodes which are not included
in the 26 immediately neighboring nodes and (ii) involves a
compromise between FMM accuracy for a given value of p and
computational effort spent computing near-field interactions
directly. In fact, the far-field can be defined by r,/R = 1/(n +
1), n=1,2,3 .. Toillustrate our method for improving the
convergence of {3) over the chosen range, we use the far-field
criterion r,/R =

The series in Eq. (1) can also be represented using Legendre
polynomials, P,, e.g., see [17], as

0w ra n
(r/R) ; P.cosy) (E) . (5

Since in practice we use only /R = 3, we deﬁne an expanded
coordinate scale, p,

pEZE. (6)

Notice that [p} = 1, which sets the appropriate interval for
telescoping the series using Chebyshev polynomials. Introduc-
ing (6) into (5), we can always find a set of coefficients, C.,
and a truncation order, p, for any desired, prescribed truncation
error, g, satisfying
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Here T,[x] is the nth-order Chebyshev polynomial of the first
kind. Although tedious, rewriting a polynomial expansion into
an equivalent Chebyshev polynomial expansion is straightfor-
ward and is computed symbolically [18] by the subroutine
ChebyshevSeries in the Appendix. Since the maximum
magnitude of any Chebyshev polynomial in {—1, 1] is unity,
the appropriate truncation can be predicted for the prescribed
error from

(8)

w|<‘3|

As it is not practical to carry the error calculation in (8) to an



TELESCOPING MULTIPOLE METHODS

FIG. 2. Geometry of near-field.

infinite number of terms, the summation is continued until the
highest order term is a sufficiently small contribution to the
sum. Once the appropriate truncation order is established, the
series can be recast as a series in Legendre polynomials with
modified coefficients, C,,

(r/R) g() P, {cos y)( ) €))

The aforementioned steps are performed by the operator Tele-
scopeSeries[ ] inthe Appendix. The desired power series
coefficients C, are printed as the results.

Finally, we must recover the modified far-field coefficients
to compute. The Legendre polynomials in (9} are replaced using
the identity [17)

Rnﬂ an 1
Pcosy) = (-1 T o (R) (10)
and after using (6) we obtain
Cu £+j+k o
an = -2y SR vt ()

which is the desired result for the FMM implementation.

3. TELESCOPING THE NEAR-FIELD
TAYLOR EXPANSION

An O(Ny FMM [3--8] also makes use of a near-field Taylor
expansion of the interparticle potential to convert the above
far-field multipole coefficients, ay, into near-field coefficients,
by, at each hierarchical level. Figure 2 illustrates the situation
in which the potential field ©(x)} is to be computed near the
center of a sphere located at ¥ due to a mass (or charge)
distribution at point y, Equation (12} follows directly from the

Law of Cosines:
2 (E) cOos 'y].
L)

o/ -

(12)

319

The quantity in the brackets is small in the near-field and is
replaced by the variable £ |&] < 1:

1
(rir,)

1
= . 13
Vite (4

The original Cartesian FMM implementation [8] expands (13)
directly in terms of &, resulting in

(14)

As described in the previous section, it is common practice in
FMM implementation to define the minimum distance of the
far- ﬁeld using r,/R = 4, so the near-field is defined using
£ = 4. Since in practice we will only use the range |£] = §, we
deﬁne expanded coordinate p = 2¢, Ip| = 1, such that

(16)

This power series can be telescoped by Chebyshev economiza-
tion using steps similar to those described in the previous sec-
tion. First, the Taylor series expansion is created, in this case
using the Mathematica® operators Normal [Series[ 1].
Second, the operator ChebyshevSeries[ ] creates an
equivalent expansion in terms of Chebyshev polynomials with
coefficients, E,,. Third, the operator TelescopeSeries|[ )
determines the minimom truncation order, p, for a prescribed
error, &, over |g| = 1:

(r;,,f > (f)( ) icrtpl e

Next, the truncated Chebyshev series is recast in terms of the
equivalent power series with coefficients, C,;:

~Scete

(r/ro) =0

(7

(18)

After application of some trigonometric identities as well as
the multinornial and binomial theorems following [8], we obtain

__i E byk(xl
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FIG. 3. Absolute error as a function of position for the telescoped far-
field multipole expansion p = 9 (solid line) and telescoped near-field Taylor
series expansion p = 8 (dashed line). The prescribed error tolerance is & =
107% in both cases.
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which are the desired results for the FMM implementation.

4. RESULTS

Two example calculations are considered for a prescribed
error tolerance of 107° using only adjacent neighbors to
define the FMM near- and far-fields. The telescoped far-
field multipole expansion requires a truncation order of p =
9, whereas the original expansion requires p = 16 to achieve
the same error tolerance. The solid line in Fig. 3 illustrates
the actual error, £, as a function of position, p, using Eq.
(17). Although the p = 8 truncation error exceeds 1075, the
actual p = 9 truncation error remains less less than 6 X
1078 in absolute magnitude within |p| = 1. The telescoped
near-field Taylor expansion requires a truncation order of
p = 8 and the actual error as a function of position is
illustrated by the dashed line in Fig. 3. The error remains
less than 4 X 107% indicating that the telescoped near-field
Taylor expansion is slightly more efficient than the telescoped
far-field multipole expansion. If we were to implement the
telescoped FMM with p = 9 for both expansions, we would
expect a (16/9)%, or roughly 32-fold, reduction in execution
time compared to the original FMM with the same 107°
error tolerance. This advantage increases exponentially as
the prescribed error tolerance is further decreased.

Telescoping the FMM far-field and near-field series pro-
vides a considerable convergence advantage. In this communi-
cation we define a FMM near-field using R/r, = §, i.e., only
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immediately adjacent neighbors. More rapid convergence
would be obtained in both the original and telescoped FMM
by extending the near-field boundary. Figure 4 illustrates the
maximum absolute error in the near-field and far-field domains
for the original and telescoped FMM. The near-field and
far-field expansion errors are equivalent for various expansion
orders in the original FMM [g], although the Chebyshev
economization technique discussed here is slightly more
efficient for the near-field expansion. As there is no error
associated with the FMM translation operators [8], the entire
FMM calculation accuracy would be limited by the telescoped
far-field multipole expansion.

For completeness we provide some useful numerical values
of economized coefficients in Tables I and II. Table I summa-
rizes the C, coefficients for equation (11) and maximum abso-
lute errors for various truncations of the telescoped far-field
multipole expansion. Table II summarizes the C, coefficients
for Eq. (20) and maximum absolute errors for various trunca-
tions of the telescoped near-field expansion. These coefficients
were obtained by approximating the infinite sums in Egs. (7)
and (17) with 100-term expansions as input to the operator
TelescopeSeries[ ].

5. CONCLUSION

These results suggest that Chebyshev economization can
markedly improve the FMM. In practice the far-field and near-
field expansion coefficients are precomputed and stored during
the initialization section of a high-performance N-body code.
Therefore, the substantially increased accuracy is obtained with-
out increased run-time cost and requires only minor changes
10 an existing code. In forthcoming publications we shall inves-
tigate aspects of applying telescoped multipole methods, TMM,
to physical problems.

max

Maximum Error, |g|

-8 1 1 L L
10 2 4 [ 8 10 12

Expansion Order, p

FIG. 4. Maximum error as a function of expansion order for the untele-
scoped FMM [8] (open circles), telescoped far-field multipole expansion (open
squares), and telescoped near-field Taylor series expansion (open diamonds).
In these cases the FMM near-field is defined using only immediately adja-
cent neighbors.
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TABLE I
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Far-Field Telescoped Coefficients, C,, in Eq. (11} and Maximum Error for Truncation Order p

p= 4 6 7 g 11
Error= 4,0x1073 3.0x10-4 7.5x10~% 6.0x10~6 4.0x10-7

n Cqy Cp (o Cp Co

0 +1.00079744664 +0.999942745907 +0,999942743%07 +1.00000411066 +0,999999704868
1 +0.485518166354 +0.501467099244 +0.499863984637 +0,500011968359, +0.429998982550
2 +0.236379510021 +0.251764123298 +0.251764123298 +0.249800451233 +0.250020740781
3 +0.177711982884 +0,113916251322 +0,126741168178 +0.124768051887 ¢ +0.125027768076
4 +0.0952355645984 +0.0542099291921 +0.0542099291921 +0.064028289519 +0.06226598731303
5 +0.0510365852497 +0.0253867515388  +0.0324899701844  +0.0310355595247
6 +0,0273504236042  +0.0273504236042 +0,0116410470812 +0.0165755329694
7 +0.0146570478348 +0,00518608964067 +0.00851045686284
8 +0.00785468826151 +0.00221527581782
9 +0.00420931475294 +0.00088494753078
10 +0.00225576497748
11 +0.0012088608080%

APPENDIX: Mathematica® Packace CnTable{l[1l]] = polynomial;

(*ChebyshevSeries returns a table of arithmetic coefficients,
C,, for the series of Chebyshev polynomials, T,(x}, which is
equivalent to the input polynomial, polyinput, in terms of the

Return{Simplify (CnTablel];
Nulll

(* TelescopeSeries accepis a normal series, seriesinput, to

independent variable, x. *)

ChebyshevSeries[polyvinput_, x_] :=
Block({{n, Cn, CnTable, cnpoly, Pn,

polynomial}l,
polynomial = polyinput;
CnTable = Table{0, {i, 0,

telescope in terms of & single independent variable, x, with
a user-requested maximum error, error, and returns a series

telescoped over the range |x| < 1. *)

TelescopeSeries|[seriesinput_, x_,

Block {{cumError = 0,

degr,

Ctable,

error_]

Exponent [poly, x1}1;
For[n = Exponent[poly, x1, n > 0, n--,
cnpely = ChebyshevTin, x]1:

Cn = Coefficient [cnpoly, x, nl;
Pn = Coefficient[polynomial, x, nl;
polynomial = Apart({polynomial -

(Pn*cnpoly) /Cnl;

Stable, Ttable, n, poly},

poly = Collect [Expand|seriesinput], x];

degr = Exponent[poly, x1;
Ctable = ChebyshevSeriesipoly, x];
Forln = 0, cumBrror < error, n+-+,

cumError += N{Abs{Ctable([degr
+ 1 — nllll;

CnTablel{[n + 1}]] = Pn/Cn; Nulll;
Null]; Stable = Dropl[Ctable, —(n — 1)};
TABLE It
Near-Field Telescoped Coefficients, C,, in Eq. (20) and Maximum Error for Truncation Order p

p= 4 6 7 9 11

Erroy= 9.0x1074 £.0x10°53 1.5x107% 9.0x1077 6.0x1078
n Cn Cn Cp Cn Cn
0 +1.000168424170 +0,9999894B6047 +0.999989486047 +1.000000676740 +0.995959555579
1 -0.493294425%73 -0.5005762%191¢ -0.499952777942 ~0.500003763858 ~0.498982705374
2 +0.363417140132 +0,3763006B4829 +0.376300684829 +0.374868276727 +0.375012507812
3 ~0.411484194544 ~0.294874339451 -0.31492678F620 -0,312207537771 -0.312532216473
4 +0.385263387620 +0.248838910848 +0.248838910848 +0.277487072894 +0.272871674970
5 ~0,372B31526266% -0.21321195899%6 -0.25236%142421 ~0.245096339495
[ +0.366465271393 +0.366465271393 +0.183117034287 +0.234809421040
7 -0.35£4844748048 ~C.156006436446 ~0.222500634623
8 +0.366696474192 +0.130388100512
9 -0.371268109514 ~0.105291316807
10 +(.378093397868
11 -0.356875334847
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Ttable = Table{ChebyshevT{i, =], {i,
0, degr + 1 — n}];
Return{apart[Stable Ttableli;
Null]
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